Energy
education

сайт для тех, кто хочет изучать энергетику

Тепловые двигатели

Тепловые двигатели

Тепловой двигатель — устройство, совершающее работу за счет использования внутренней энергии, тепловая машина, превращающая тепло в механическую энергию, использует зависимость теплового расширения вещества от температуры.

1. Общие сведения

Паровые машины. В середине XVII века были сделаны первые попытки перехода к машинному производству, потребовавшие создания двигателей, не зависящих от местных источников энергии (воды, ветра и пр.). Первым двигателем, в котором использовалось тепловая энергия химического топлива стала пароатмосферная машина, изготовленная по проектам французского физика Дени Папена и английского механика Томаса Севери. Эта машина была лишена возможности непосредственно служить механическим приводом, к ней «прилагалось в комплект» водяное мельничное колесо (по-современному говоря, водяная турбина), которое вращала вода, выжимаемая паром из котла паровой машины в резервуар водонапорной башни. Котел то подогревался паром, то охлаждался водой: машина действовала периодически.

В 1763 году русский механик Иван Иванович Ползунов изготовил по собственному проекту стационарную паровую машину непрерывного действия. В ней были сдвоены два цилиндра, поочерёдно заполнявшиеся паром, и также подающими воду на башню, но — постоянно.

К 1784 году английский механик Джеймс Уатт создал более совершенную паровую машину, названную универсальным паровым двигателем. Уатт с детства работал подручным на машине конструкции Севери. В его задачу входило постоянно переключать краны подачи пара и воды на котел. Эта однообразная работа изрядно надоела изобретателю и побудила изобрести как поршень двойного хода, так и автоматическую клапанную коробку (потом и центробежный предохранитель). В машине был предусмотрен в цилиндре жесткий поршень, по обе стороны которого поочередно подавался пар. Все происходило в автоматическом режиме и непрерывно. Поршень вращал через кривошипно—шатунную систему маховик, обеспечивающий плавность хода. Паровая машина могла теперь стать приводом различных механизмов и перестала быть привязана к водонапорной башне.

Элементы, придуманные Уаттом, входили в той или иной форме во все паровые машины. Паровые машины совершенствовали и применяли для решения различных технических задач: привода станков, судов, экипажей для перевозки людей по дорогам, локомотивов на железных дорогах. К 1880 году суммарная мощность всех работавших паровых машин превысила 26 млн кВт (35 млн л.с.).

Локомотив.
Локомотив.

Цикл Карно — идеальный термодинамический цикл. Тепловая машина Карно, работающая по этому циклу, обладает максимальным КПД из всех машин, у которых максимальная и минимальная температуры осуществляемого цикла совпадают соответственно с максимальной и минимальной температурами цикла Карно. Цикл Карно назван в честь французского физика Сади Карно, который впервые его исследовал в 1824 году. Одним из важных свойств цикла Карно является его обратимость: он может быть проведён как в прямом, так и в обратном направлении, при этом энтропия адиабатически изолированной (без теплообмена с окружающей средой) системы не меняется.

В 1816 шотландец Роберт Стирлинг предложил двигатель внешнего сгорания, называемый сейчас его именем Двигатель Стирлинга. В этом двигателе рабочее тело (воздух или иной газ) заключен в герметичный объём. Здесь осуществлен цикл по типу цикла Севери («до-Уаттовского»), но нагрев рабочего тела и его охлаждение производятся в различных объёмах машины и сквозь стенки рабочих камер. Природа нагревателя и охладителя для цикла не имеют значения, а потому он может работать даже в космосе и от любого источника тепла. КПД созданных сейчас стирлингов невелик. Теоретически он должен раза в 2 превышать КПД для ДВС, а практически - это примерно одинаковые величины. Но у стирлингов есть ряд других преимуществ, которые способствовали развитию исследований в этом направлении.

Двигатели внешнего сгорания — класс двигателей, где источник тепла или процесс сгорания топлива отделены от рабочего тела. К этому классу относятся паровые машины, паровые турбины, двигатели Стирлинга, газовые турбины внешнего сгорания, а также другие типы двигателей. Долгое время были неоправданно забыты, в последнее время находят всё большее применение, в основном из-за таких своих особенностей как возможность использования любых источников тепла (например, солнечной или ядерной энергии), нетребовательность к виду топлива.

Двигатели внешнего сгорания.
Двигатели внешнего сгорания.

Двигатель внутреннего сгорания. Проект первого двигателя внутреннего сгорания (ДВС) принадлежит известному изобретателю часового анкера Христиану Гюйгенсу и предложен ещё в XVII веке. Интересно, что в качестве топлива предполагалось использовать порох, а сама идея была подсказана артиллерийским орудием. Все попытки Дениса Папена (упомянутого выше, как создатель первой паровой машины) построить машину на таком принципе, успехом не увенчались. Первый надёжно работавший ДВС сконструировал в 1860 году французский инженер Эжен Ленуар. Двигатель Ленуара работал на газовом топливе. Спустя 16 лет немецкий конструктор Николас Отто создал более совершенный 4-тактный газовый двигатель. В этом же 1876 году шотландский инженер Дугальд Кларк испытал первый удачный 2-тактный двигатель. Совершенствованием ДВС занимались многие инженеры и механики. Так, в 1883 году немецкий инженер Карл Бенц изготовил использованный им в дальнейшем 2-тактный ДВС. В 1897 году его соотечественник и тоже инженер Рудольф Дизель предложил ДВС с воспламенением рабочей смеси в цилиндре от сжатия воздуха, названный впоследствии дизелем. В XX веке ДВС стал основным двигателем в автомобильном транспорте. В 70-х годах почти 80 % суммарной мощности всех существовавших ДВС приходилось на транспортные машины (автомобили, трактора и пр.). Параллельно шло совершенствование гидротурбин, применявшихся на гидроэлектростанциях. Их мощность в 70-х годах XX века превысила 600 МВт.

Поршневые двигатели — камерой сгорания является цилиндр, где химическая энергия топлива превращается в механическую энергию, которая из возвратно-поступательного движения поршня превращается во вращательную с помощью кривошипно-шатунного механизма.

Бензиновые двигатели — смесь топлива с воздухом готовится в карбюраторе и далее во впускном коллекторе, или во впускном коллекторе при помощи распыляющих форсунок (механических или электрических), далее смесь подаётся в цилиндр, сжимается, а затем поджигается при помощи искры, проскакивающей между электродами свечи. Основная характерная особенность топливо-воздушной смеси в этом случае - её гомогенизированность. Чем более однородной по составу является смесь, тем более качественно идёт процесс сгорания.

Бензиновый двигатель.
Бензиновый двигатель.

Дизельные двигатели — специальное дизельное топливо впрыскивается в цилиндр под высоким давлением. Горючая смесь образуется (и сразу же сгорает) непосредственно в цилиндре по мере впрыска порции топлива. Воспламенение смеси происходит под действием высокой температуры воздуха, подвергшегося сжатию в цилиндре.

Дизельные двигатель.
Дизельные двигатель.

Роторно-поршневой двигатель внутреннего сгорания, конструкция которого разработана в 1957 году инженером компании NSU Вальтером Фройде, ему же принадлежала идея этой конструкции. Двигатель разрабатывался в соавторстве с Феликсом Ванкелем, работавшим над другой конструкцией роторно-поршневого двигателя.

Роторно-поршневой двигатель.
Роторно-поршневой двигатель.

Реактивный двигатель — тепловой реактивный двигатель, в качестве рабочего тела которого используется атмосферный воздух, нагреваемый за счёт химической реакции окисления горючего кислородом, содержащимся в самом рабочем теле. Реактивные двигатели используются, как правило, для приведения в движение воздушных летательных аппаратов.

Реактивный двигатель.
Реактивный двигатель.

Газотурбинный двигатель — тепловой двигатель, в котором газ сжимается и нагревается, а затем энергия сжатого и нагретого газа преобразуется в механическую работу на валу газовой турбины. В отличие от поршневого двигателя, в газотурбинном двигателе процессы происходят в потоке движущегося газа.

В первой половине XX века. создали новые типы первичных двигателей: газовые турбины, реактивные двигатели, а в 50-х и ядерные силовые установки. Процесс совершенствования и изобретения первичных двигателей продолжается.