Energy
education

сайт для тех, кто хочет изучать энергетику

Термодинамика и тепломассообмен

Идеальный газ

Идеальный газ

Идеальный газ - математическая модель газа, в которой предполагается, что потенциальной энергией молекул можно пренебречь по сравнению с их кинетической энергией. Между молекулами не действуют силы притяжения или отталкивания, соударения частиц между собой и со стенками сосуда абсолютно упруги, а время взаимодействия между молекулами пренебрежимо мало по сравнению со средним временем между столкновениями.

5. Процессы изменения состояния идеальных газов

К основным термодинамическим процессам относят следующие четыре процесса:

  • изохорный – при постоянном объеме ($v = const$);
  • изобарный – при постоянном давлении ($р = const$);
  • изотермический – при постоянной температуре ($Т = const$);
  • адиабатный – без теплообмена с внешней средой ($\mathrm{d}q = 0$).

В реальных условиях указанные ограничения практически не выполняются. В связи с этим в технической термодинамике существует понятие политропного процесса как общего случая термодинамического процесса. Предполагается, что политропный процесс обратим и теплоемкость рабочего тела (идеального газа) $с_n$ в ходе данного процесса не изменяется.

Уравнение политропного процесса имеет вид:

$$p·v^n = const.$$

где $n = \frac{c_n-c_p}{c_n-c_v}$ – постоянная величина, называемая показателем политропы.

Изохорный процесс — это термодинамический процесс, который происходит при постоянстве объёма. В газах и жидкостях осуществляется очень просто: для этого достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма. Изохорный процесс-это процесс изменения состояния термодинамической системы при постоянном обьеме. При постоянном объеме давление газа пропорционалено его температуре.

Один из пионеров воздухоплавания Жак Александр Сезар Шарль пришел в науку в результате своего увлечения строительством монгольфьеров — больших воздушных шаров, заполненных разогретым воздухом, — которые тогда только-только появились. Я беседовал с современными пилотами воздушных шаров, и они утверждают, что их конструкция с использованием открытой газовой горелки, разработанная Шарлем более двух столетий назад, не претерпела принципиальных изменений и используется до наших дней. Ничего удивительного в том, что научные интересы Шарля лежали в области исследования свойств газов, стало быть, нет. Закон, носящий его имя, Шарль сформулировал в 1787 году после ряда опытов с кислородом, азотом, водородом и углекислым газом.

Чтобы понять смысл закона Шарля, представьте себе газ как скопление быстро движущихся и соударяющихся молекул. Давление газа определяется ударами молекул о стенки сосуда: чем больше ударов, тем выше давление. Например, молекулы воздуха в комнате, где вы находитесь, оказывают на поверхность вашего тела давление 101 325 паскалей (или 1 бар, если речь идет о метеорологии).

Чтобы понять закон Шарля, представьте себе воздух внутри воздушного шарика. При постоянной температуре воздух в шарике будет расширяться или сжиматься, пока давление, производимое его молекулами, не достигнет 101 325 паскалей и не сравняется с атмосферным давлением. Иными словами, пока на каждый удар молекулы воздуха извне, направленный внутрь шарика, не будет приходиться аналогичный удар молекулы воздуха, направленный изнутри шарика вовне. Если понизить температуру воздуха в шарике (например, положив его в большой холодильник), молекулы внутри шарика станут двигаться медленнее, менее энергично ударяя изнутри о стенки шарика. Молекулы наружного воздуха тогда будут сильнее давить на шарик, сжимая его, в результате объем газа внутри шарика будет уменьшаться. Это будет происходить до тех пор, пока увеличение плотности газа не компенсирует понизившуюся температуру, и тогда опять установится равновесие.

Закон Шарля, наряду с другими газовыми законами, лег в основу уравнения состояния идеального газа, описывающего соотношение давления, объема и температуры газа с количеством вещества.

Изохорный процесс.
Изохорный процесс.

Изобарный процесс — термодинамический процесс, происходящий в системе при постоянном давлении. При постоянном давлении объем газа пропорционален его температуре.

Изобарный процесс.
Изобарный процесс.

Изотермический процесс — термодинамический процесс, происходящий в физической системе при постоянной температуре.

Для осуществления изотермического процесса систему обычно помещают в термостат (массивное тело, находящееся в тепловом равновесии), теплопроводность которого велика, так что теплообмен с системой происходит достаточно быстро по сравнению со скоростью протекания процесса и температура системы в любой момент практически не отличается от температуры термостата. Можно осуществить изотермический процесс иначе — с применением источников или стоков тепла, контролируя постоянство температуры с помощью термометров. К изотермическим процессам относятся, например, кипение жидкости или плавление твёрдого тела при постоянном давлении. В идеальном газе при изотермическом процессе произведение давления на объём постоянно (закон Бойля-Мариотта).

Роберт Бойль — яркий пример ученого-джентльмена, сына давно ушедшей эпохи, когда наука была уделом исключительно состоятельных людей, посвящавших занятиям ею свой досуг. Большинство исследований Бойля относятся по современной классификации к разряду химических опытов, хотя сам себя он, наверняка, считал натурфилософом (физиком-теоретиком) и естествоиспытателем (физиком-экспериментатором). Судя по всему, поведением газов он заинтересовался, увидев проект одного из первых в мире воздушных насосов. Сконструировав и построив очередную, усовершенствованную версию своего двустороннего воздушно-вакуумного насоса, он решил исследовать, как повышенное и пониженное давление газа в герметичном сосуде, к которому был подключен его новый аппарат, влияет на свойства газов. Будучи одаренным экспериментатором, Бойль одновременно придерживался весьма новых и необычных для той эпохи взглядов, считая, что наука должна идти от эмпирических наблюдений, а не основываться исключительно на умозрительно-философских построениях.

В формулировке Бойля закон звучал буквально так: «Под воздействием внешней силы газ упруго сжимается, а в ее отсутствие расширяется, при этом линейное сжатие или расширение пропорционально силе упругости газа». Представьте, что вы сдавливаете надутый воздушный шарик. Поскольку свободного пространства между молекулами воздуха достаточно, вы без особого труда, приложив некоторую силу и проделав определенную работу, сожмете шарик, уменьшив объем газа внутри него. Это одно из основных отличий газа от жидкости. В шарике с жидкой водой, например, молекулы упакованы плотно, как если бы шарик был заполнен микроскопическими дробинками. Поэтому вода не поддается, в отличие от воздуха, упругому сжатию. (Если не верите, попробуйте протолкнуть плотно пригнанную пробку внутрь горлышка бутылки, заполненной водой по самую пробку.) Закон Бойля—Мариотта, наряду с законом Шарля, лег в основу Уравнения состояния идеального газа.

Изотермический процесс.
Изотермический процесс.

Адиабатный процесс — термодинамический процесс в макроскопической системе, при котором система не получает и не отдаёт тепловой энергии. Адиабатический процесс является частным случаем политропного процесса. Адиабатические процессы обратимы, если их проводить достаточно медленно (квазистатически). В общем случае адиабатический процесс необратим.

Адиабатный процесс протекает в молекулярной системе при ее термодинамической изоляции, то есть молекулярная система не может обмениваться с окружающей средой теплом. Осуществить в реальности такую изоляцию невозможно. Но если процесс в молекулярной системе будет протекать очень быстро, а изоляция обладает низкой теплоемкостью и теплопроводностью, то такой процесс можно считать почти адиабатическим. Внутри бутылки имеется жидкость, смесь паров воды и спирта, воздух. Соединяем бутылку и насос вакуумным шлангом и накачиваем в бутылку воздух. Когда силы давления газовой смеси превысят силы трения и атмосферного давления, пробка будет выбита из бутылки. Работу по выбиванию пробки совершила газовая смесь. Так как процесс выбивания пробки очень быстр, то газовая смесь не смогла обменяться теплом с окружающей средой и, следовательно, совершила работу за счет своей внутренней энергии. Но, уменьшив свою внутреннюю энергию, смесь охладилась, тогда часть молекул паров спирта и воды сконденсировалась, и в бутылке появился туман.

Адиабатный процесс.
Адиабатный процесс.
Адиабатный процесс.
Адиабатный процесс.